

Math Virtual Learning

Precalculus with Trigonometry

Students will simplify expressions using Fundamental Trig Identities

April 23, 2020

Precalculus with Trigonometry Lesson: April 23nd, 2020

Objective/Learning Target: Students will simplify expressions using Fundamental Trig Identities

Watch Video:

Simplifying Expressions Using Trig Identities

Example 1: Simplify tan(x)cos(x)

tanxcosx

Oftentimes it's easiest to simplify trig expressions by **rewriting each function in terms of sine and cosine**.

By the Quotient Identity, rewrite tan(x) as sin(x)/cos(x), cancel the cos(x) terms and the expression simplifies to equal sin(x)

tanxcosx = sin x

Example 2

Simplify sec(x)/csc(x)

By the Reciprocal and Quotient Identities, the expression simplifies to tan(x)

Example 3: Simplify $\cos \theta + \cos \theta (\tan^2 \theta)$

Notice that the terms in the expression $\cos \theta + \cos \theta (\tan^2 \theta)$ have a common factor of $\cos \theta$, so start by factoring this common term out.

 $\cos \theta + \cos \theta (\tan^2 \theta)$ $\cos \theta (1 + tan^2 \theta)$

Now, use the trigonometric identity $1 + \tan^2 \theta = \sec^2 \theta$, substitute, and simplify.

$$\cos \theta (1 + tan^2 \theta)$$

= $\cos \theta (sec^2 \theta)$
= $\cos \theta (\frac{1}{cos^2 \theta})$
= $\frac{1}{cos\theta}$
= $\sec \theta$

Practice

Use the Fundamental Trigonometric Identities to simplify the following expressions.

 $\frac{\tan\theta}{\cot\theta}$

2.
$$(\sec^2 \theta - 1) \cos^2 \theta$$

3. $\csc\theta - \cos\theta \cot\theta$

 $4. \quad \sin^2 x \left(1 + \cot^2 x\right)$

Answers to practice

1. tanθ/cotθ		2.		
= tanθ/1/tan = $\tan^2 \theta$	θ Reciprocal Identity 9	$(\sec^2 \theta)$ = $(\tan^2)^2$ = $\left(\frac{\sin^2}{\cos^2}\right)^2$	$(\theta - 1)\cos^2 \theta$ $(\theta - 1)\cos^2 \theta$ $(\theta - 1)\cos^2 \theta$ $(\theta - 1)\cos^2 \theta$ $(\theta - 1)\cos^2 \theta$	Pythagorean Identity Quotient Identity
		$= \sin^{-1}$	0	Multiply and divide out common factor.
3. = $\frac{1}{\sin\theta} - \cos\theta \left(\frac{\cos\theta}{\sin\theta}\right)$	Reciprocal and Quotient Identities	4. = si	$n^2 x \csc^2 x$	x Pythagorean Identity
$=\frac{1-\cos^2\theta}{\sin\theta}$	Write as a fraction with a common denominator.	si	$n^2 x \frac{1}{\sin^2 x}$	Reciprocal Identity
$=\frac{\sin^2\theta}{\sin\theta}$	Pythagorean Identity	=	1	Cancel out common factor
$=\sin\theta$	Divide out common factor of $\sin \theta$.			

Additional Practice and Resources:

Additional Resource Videos:

Simplifying Using Pythagorean Identities - Khan Academy

Simplifying Expressions using Fundamental Identities

Additional practice <u>Practice Simplifying Trig Expressions</u> *Answers to practice are on the next slide

Answer to simplifying trig expressions practice

